Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659893

RESUMO

The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga. Bidirectional gene flow across the CLV cline created admixed intermediate populations in both the north Caucasus, such as the Maikop people, and on the steppe, such as those at the site of Remontnoye north of the Manych depression. CLV people also helped form two major riverine clines by admixing with distinct groups of European hunter-gatherers. A "Volga Cline" was formed as Lower Volga people mixed with upriver populations that had more Eastern hunter-gatherer (EHG) ancestry, creating genetically hyper-variable populations as at Khvalynsk in the Middle Volga. A "Dnipro Cline" was formed as CLV people bearing both Caucasus Neolithic and Lower Volga ancestry moved west and acquired Ukraine Neolithic hunter-gatherer (UNHG) ancestry to establish the population of the Serednii Stih culture from which the direct ancestors of the Yamnaya themselves were formed around 4000BCE. This population grew rapidly after 3750-3350BCE, precipitating the expansion of people of the Yamnaya culture who totally displaced previous groups on the Volga and further east, while admixing with more sedentary groups in the west. CLV cline people with Lower Volga ancestry contributed four fifths of the ancestry of the Yamnaya, but also, entering Anatolia from the east, contributed at least a tenth of the ancestry of Bronze Age Central Anatolians, where the Hittite language, related to the Indo-European languages spread by the Yamnaya, was spoken. We thus propose that the final unity of the speakers of the "Proto-Indo-Anatolian" ancestral language of both Anatolian and Indo-European languages can be traced to CLV cline people sometime between 4400-4000 BCE.

2.
J Hum Evol ; 185: 103453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931353

RESUMO

The Initial Upper Paleolithic (IUP) is one of the most important phases in the recent period of the evolution of humans. During a narrow period in the first half of Marine Isotope Stage 3 laminar industries, accompanied by developed symbolism and specific blade technology, emerged over a vast area, replacing different variants of the Middle Paleolithic. In western Eurasia, the earliest appearance of IUP technology is seen at the Boker Tachtit site, dated ca. 50 ka cal BP. The earliest evidence of IUP industries in the Balkans and Central Europe, linked to the spread of Homo sapiens, has been dated to around 48 ka cal BP. A key area of IUP dispersals are the mountains and piedmont of southern Siberia and eastern Central Asia. One of the reference assemblages here is Kara-Bom, an open-air site in the Siberian Altai. Three major settlement phases are distinguished in the sediment sequence. In this paper, we present the results of new radiocarbon determinations and Bayesian models. We find that the latest phase of the IUP, Upper Paleolithic 1 ('UP1') is bracketed between 43 and 35 ka cal BP (at 95.4% probability). The earliest IUP phase, 'UP2', begins to accumulate from ca. 49 ka cal BP and ends by ca. 45 ka cal BP. The Middle Paleolithic 'MP2' assemblages all fall prior to 50 ka cal BP. We can detect a spatial distribution of dates from the geographic core of the IUP beyond the Altai where it appears around 47-45 ka cal BP. The current distribution of dates suggests a west-east dispersal of the IUP technocomplex along the mountain belts of Central Asia and South Siberia.


Assuntos
Hominidae , Humanos , Animais , Teorema de Bayes , Península Balcânica , Sibéria , Tecnologia , Arqueologia , Fósseis
4.
Nat Hum Behav ; 7(3): 342-352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702939

RESUMO

This work examines the possible behaviour of Neanderthal groups at the Cueva Des-Cubierta (central Spain) via the analysis of the latter's archaeological assemblage. Alongside evidence of Mousterian lithic industry, Level 3 of the cave infill was found to contain an assemblage of mammalian bone remains dominated by the crania of large ungulates, some associated with small hearths. The scarcity of post-cranial elements, teeth, mandibles and maxillae, along with evidence of anthropogenic modification of the crania (cut and percussion marks), indicates that the carcasses of the corresponding animals were initially processed outside the cave, and the crania were later brought inside. A second round of processing then took place, possibly related to the removal of the brain. The continued presence of crania throughout Level 3 indicates that this behaviour was recurrent during this level's formation. This behaviour seems to have no subsistence-related purpose but to be more symbolic in its intent.


Assuntos
Homem de Neandertal , Animais , Herbivoria , Crânio , Arqueologia , Espanha , Mamíferos
5.
Nat Ecol Evol ; 6(11): 1658-1668, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280785

RESUMO

Genetic investigations of Upper Palaeolithic Europe have revealed a complex and transformative history of human population movements and ancestries, with evidence of several instances of genetic change across the European continent in the period following the Last Glacial Maximum (LGM). Concurrent with these genetic shifts, the post-LGM period is characterized by a series of significant climatic changes, population expansions and cultural diversification. Britain lies at the extreme northwest corner of post-LGM expansion and its earliest Late Glacial human occupation remains unclear. Here we present genetic data from Palaeolithic human individuals in the United Kingdom and the oldest human DNA thus far obtained from Britain or Ireland. We determine that a Late Upper Palaeolithic individual from Gough's Cave probably traced all its ancestry to Magdalenian-associated individuals closely related to those from sites such as El Mirón Cave, Spain, and Troisième Caverne in Goyet, Belgium. However, an individual from Kendrick's Cave shows no evidence of having ancestry related to the Gough's Cave individual. Instead, the Kendrick's Cave individual traces its ancestry to groups who expanded across Europe during the Late Glacial and are represented at sites such as Villabruna, Italy. Furthermore, the individuals differ not only in their genetic ancestry profiles but also in their mortuary practices and their diets and ecologies, as evidenced through stable isotope analyses. This finding mirrors patterns of dual genetic ancestry and admixture previously detected in Iberia but may suggest a more drastic genetic turnover in northwestern Europe than in the southwest.


Assuntos
Cavernas , Ecologia , Humanos , Reino Unido , Europa (Continente) , Cefotaxima
6.
Sci Adv ; 8(6): eabj9496, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138885

RESUMO

Determining the extent of overlap between modern humans and other hominins in Eurasia, such as Neanderthals and Denisovans, is fundamental to understanding the nature of their interactions and what led to the disappearance of archaic hominins. Apart from a possible sporadic pulse recorded in Greece during the Middle Pleistocene, the first settlements of modern humans in Europe have been constrained to ~45,000 to 43,000 years ago. Here, we report hominin fossils from Grotte Mandrin in France that reveal the earliest known presence of modern humans in Europe between 56,800 and 51,700 years ago. This early modern human incursion in the Rhône Valley is associated with technologies unknown in any industry of that age outside Africa or the Levant. Mandrin documents the first alternating occupation of Neanderthals and modern humans, with a modern human fossil and associated Neronian lithic industry found stratigraphically between layers containing Neanderthal remains associated with Mousterian industries.

8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33798098

RESUMO

Elucidating when Neanderthal populations disappeared from Eurasia is a key question in paleoanthropology, and Belgium is one of the key regions for studying the Middle to Upper Paleolithic transition. Previous radiocarbon dating placed the Spy Neanderthals among the latest surviving Neanderthals in Northwest Europe with reported dates as young as 23,880 ± 240 B.P. (OxA-8912). Questions were raised, however, regarding the reliability of these dates. Soil contamination and carbon-based conservation products are known to cause problems during the radiocarbon dating of bulk collagen samples. Employing a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, we demonstrate here that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination. Our compound-specific radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Forêt demonstrate that they disappeared from Northwest Europe at 44,200 to 40,600 cal B.P. (at 95.4% probability), much earlier than previously suggested. Our data contribute significantly to refining models for Neanderthal disappearance in Europe and, more broadly, show that chronometric models regarding the appearance or disappearance of animal or hominin groups should be based only on radiocarbon dates obtained using robust pretreatment methods.


Assuntos
Antropologia , Extinção Biológica , Homem de Neandertal , Animais , Arqueologia , Europa (Continente) , Fósseis , Genômica/métodos , Humanos , Datação Radiométrica
9.
Science ; 370(6516): 579-583, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122380

RESUMO

We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.


Assuntos
Povo Asiático/genética , Evolução Molecular , Hominidae/genética , Animais , DNA Antigo , Feminino , Humanos , Mongólia , População , Crânio
10.
Nat Commun ; 10(1): 274, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700710

RESUMO

A skullcap found in the Salkhit Valley in northeast Mongolia is, to our knowledge, the only Pleistocene hominin fossil found in the country. It was initially described as an individual with possible archaic affinities, but its ancestry has been debated since the discovery. Here, we determine the age of the Salkhit skull by compound-specific radiocarbon dating of hydroxyproline to 34,950-33,900 Cal. BP (at 95% probability), placing the Salkhit individual in the Early Upper Paleolithic period. We reconstruct the complete mitochondrial genome (mtDNA) of the specimen. It falls within a group of modern human mtDNAs (haplogroup N) that is widespread in Eurasia today. The results now place the specimen into its proper chronometric and biological context and allow us to begin integrating it with other evidence for the human occupation of this region during the Paleolithic, as well as wider Pleistocene sequences across Eurasia.


Assuntos
Radioisótopos de Carbono/análise , DNA Mitocondrial/genética , Fósseis , Hominidae/anatomia & histologia , Hominidae/genética , Crânio/química , Animais , DNA Mitocondrial/química , Genoma Mitocondrial , Humanos , Mongólia , Paleontologia , Datação Radiométrica , Crânio/anatomia & histologia
11.
Nature ; 565(7741): 640-644, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700871

RESUMO

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Assuntos
Cavernas , Fósseis , Hominidae , Datação Radiométrica , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Cervos , Fêmur/química , Sedimentos Geológicos/química , História Antiga , Hominidae/genética , Humanos , Homem de Neandertal/genética , Isótopos de Oxigênio , Sibéria , Fatores de Tempo , Dente/química
12.
PLoS One ; 13(10): e0204368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303989

RESUMO

The estimated period in which human colonization of Madagascar began has expanded recently to 5000-1000 y B.P., six times its range in 1990, prompting revised thinking about early migration sources, routes, maritime capability and environmental changes. Cited evidence of colonization age includes anthropogenic palaeoecological data 2500-2000 y B.P., megafaunal butchery marks 4200-1900 y B.P. and OSL dating to 4400 y B.P. of the Lakaton'i Anja occupation site. Using large samples of newly-excavated bone from sites in which megafaunal butchery was earlier dated >2000 y B.P. we find no butchery marks until ~1200 y B.P., with associated sedimentary and palynological data of initial human impact about the same time. Close analysis of the Lakaton'i Anja chronology suggests the site dates <1500 y B.P. Diverse evidence from bone damage, palaeoecology, genomic and linguistic history, archaeology, introduced biota and seafaring capability indicate initial human colonization of Madagascar 1350-1100 y B.P.


Assuntos
Fósseis , Migração Humana/história , Animais , Arqueologia , Artiodáctilos , Osso e Ossos , Eupleridae , História Antiga , Humanos , Madagáscar , Datação Radiométrica , Strepsirhini
13.
Nature ; 561(7721): 113-116, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30135579

RESUMO

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.


Assuntos
Hominidae/genética , Hibridização Genética/genética , Homem de Neandertal/genética , Alelos , Animais , Pai , Feminino , Fluxo Gênico/genética , Genoma , Genômica , História Antiga , Humanos , Masculino , Mães , Fatores de Tempo
14.
Science ; 358(6363): 659-662, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28982795

RESUMO

Present-day hunter-gatherers (HGs) live in multilevel social groups essential to sustain a population structure characterized by limited levels of within-band relatedness and inbreeding. When these wider social networks evolved among HGs is unknown. To investigate whether the contemporary HG strategy was already present in the Upper Paleolithic, we used complete genome sequences from Sunghir, a site dated to ~34,000 years before the present, containing multiple anatomically modern human individuals. We show that individuals at Sunghir derive from a population of small effective size, with limited kinship and levels of inbreeding similar to HG populations. Our findings suggest that Upper Paleolithic social organization was similar to that of living HGs, with limited relatedness within residential groups embedded in a larger mating network.


Assuntos
Genoma Humano , Comportamento Reprodutivo/história , Comportamento Social/história , DNA Antigo , História Antiga , Humanos , Densidade Demográfica , Federação Russa
15.
Proc Natl Acad Sci U S A ; 114(40): 10606-10611, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28874524

RESUMO

Previous dating of the Vi-207 and Vi-208 Neanderthal remains from Vindija Cave (Croatia) led to the suggestion that Neanderthals survived there as recently as 28,000-29,000 B.P. Subsequent dating yielded older dates, interpreted as ages of at least ∼32,500 B.P. We have redated these same specimens using an approach based on the extraction of the amino acid hydroxyproline, using preparative high-performance liquid chromatography (Prep-HPLC). This method is more efficient in eliminating modern contamination in the bone collagen. The revised dates are older than 40,000 B.P., suggesting the Vindija Neanderthals did not live more recently than others across Europe, and probably predate the arrival of anatomically modern humans in Eastern Europe. We applied zooarchaeology by mass spectrometry (ZooMS) to find additional hominin remains. We identified one bone that is Neanderthal, based on its mitochondrial DNA, and dated it directly to 46,200 ± 1,500 B.P. We also attempted to date six early Upper Paleolithic bone points from stratigraphic units G1, Fd/d+G1 and Fd/d, Fd. One bone artifact gave a date of 29,500 ± 400 B.P., while the remainder yielded no collagen. We additionally dated animal bone samples from units G1 and G1-G3 These dates suggest a co-occurrence of early Upper Paleolithic osseous artifacts, particularly split-based points, alongside the remains of Neanderthals is a result of postdepositional mixing, rather than an association between the two groups, although more work is required to show this definitively.


Assuntos
Cavernas , Homem de Neandertal , Datação Radiométrica/métodos , Animais , Croácia , Feminino , Fósseis , Masculino
16.
J Hum Evol ; 107: 86-93, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28526291

RESUMO

The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced.


Assuntos
Fósseis , Datação Radiométrica/métodos , Osso Temporal , Afeganistão , Humanos , Masculino
17.
Nat Commun ; 7: 13158, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27754477

RESUMO

The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21-18 kya).


Assuntos
Bison/genética , Cavernas , DNA Antigo/química , Fósseis , Pinturas , Animais , Bison/classificação , Bovinos , Núcleo Celular/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Europa (Continente) , Evolução Molecular , Genoma Mitocondrial/genética , Filogenia , Análise de Sequência de DNA
18.
Nature ; 522(7555): 167-72, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062507

RESUMO

The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.


Assuntos
Povo Asiático/genética , Evolução Cultural/história , Fósseis , Genoma Humano/genética , Genômica , Idioma/história , População Branca/genética , Arqueologia/métodos , Ásia/etnologia , DNA/genética , DNA/isolamento & purificação , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Intolerância à Lactose/genética , Polimorfismo de Nucleotídeo Único/genética , Pigmentação da Pele/genética
19.
J Hum Evol ; 78: 158-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25498105

RESUMO

The Palaeolithic of southern Central Europe has a long history of archaeological research. Particularly, the presence of numerous osseous projectile points in many early Upper Palaeolithic (EUP) assemblages in this region has attracted the attention of the international research community. However, the scarcity of properly identified and well-dated Aurignacian contexts represents an obstacle for investigation of the nature and timing of the Middle to Upper Palaeolithic transition. In this context, the question of whether Neandertals made Aurignacian osseous projectile points, either on their own or as a consequence of cultural interaction with anatomically modern humans (AMH), still remains an open issue. Here we reassess the EUP record of Slovenia by evaluating the Aurignacian character of the assemblages from Potocka zijalka, Mokriska jama and Divje babe I in the light of their suggested roots in the local Mousterian. We provide a comprehensive description of the lithic industry from Potocka zijalka, which represents one of the rare EUP assemblages of southern Central Europe with a representative number of lithic artefacts to be analysed from the perspective of lithic technology and raw material economy. Our re-analysis of the Slovenian assemblages is backed by a series of 11 new ultrafiltered collagen 14C dates obtained directly on associated osseous projectile points from the studied assemblages. The Aurignacian of Potocka zijalka underlines the remarkable consistency of the Early Aurignacian with low typo-technological variability across Europe, resulting from a marked dependence on transported toolkits and raw material conservation. The new radiocarbon determinations for the Aurignacian of Slovenia appear to post-date the 34-32 ka BP (thousands of years before present) threshold for the last Neandertals in the region. Although not falsified, the hypothesis of Aurignacian bone tools in southern Central Europe as a product of late Neandertals is not supported by our re-examination of the EUP record of Slovenia.


Assuntos
Fósseis , Tecnologia/instrumentação , Arqueologia , Cultura , Sedimentos Geológicos , Humanos , Eslovênia
20.
Nature ; 512(7514): 306-9, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25143113

RESUMO

The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at ∼50,000 years ago. Here we apply improved accelerator mass spectrometry (14)C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030-39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding 'transitional' archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600-5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.


Assuntos
Aculturação/história , Extinção Biológica , Geografia , Homem de Neandertal , Análise Espaço-Temporal , Animais , Teorema de Bayes , História Antiga , Humanos , Espectrometria de Massas , Homem de Neandertal/genética , Homem de Neandertal/fisiologia , Datação Radiométrica , Fatores de Tempo , Comportamento de Utilização de Ferramentas , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...